文章中心ARTICLE CENTER

在发展中求生存,不断完善,以良好信誉和科学的管理促进企业迅速发展
资讯中心 产品中心 文章中心

首页-深圳量子语音识别服务标准

深圳量子语音识别服务标准

更新时间:2025-11-10

    ASR)原理语音识别技术是让机器通过识别把语音信号转变为文本,进而通过理解转变为指令的技术。目的就是给机器赋予人的听觉特性,听懂人说什么,并作出相应的行为。语音识别系统通常由声学识别模型和语言理解模型两部分组成,分别对应语音到音节和音节到字的计算。一个连续语音识别系统大致包含了四个主要部分:特征提取、声学模型、语言模型和解码器等。(1)语音输入的预处理模块对输入的原始语音信号进行处理,滤除掉其中的不重要信息以及背景噪声,并进行语音信号的端点检测(也就是找出语音信号的始末)、语音分帧(可以近似理解为,一段语音就像是一段视频,由许多帧的有序画面构成,可以将语音信号切割为单个的“画面”进行分析)等处理。(2)特征提取在去除语音信号中对于语音识别无用的冗余信息后,保留能够反映语音本质特征的信息进行处理,并用一定的形式表示出来。也就是提取出反映语音信号特征的关键特征参数形成特征矢量序列,以便用于后续处理。(3)声学模型训练声学模型可以理解为是对声音的建模,能够把语音输入转换成声学表示的输出,准确的说,是给出语音属于某个声学符号的概率。根据训练语音库的特征参数训练出声学模型参数。语音识别包括两个阶段:训练和识别。深圳量子语音识别服务标准

    我们可以用语音跟它们做些简单交流,完成一些简单的任务等等。语音识别技术的应用领域:汽车语音控制当我们驾驶汽车在行驶过程中,必须时刻握好方向盘,但是难免有时候遇到急事需要拨打电话这些,这时候运用汽车上的语音拨号功能的免提电话通信方式便可简单实现。此外,对汽车的卫星导航定位系统(GPS)的操作,汽车空调、照明以及音响等设备的操作,同样也可以用语音的方式进行操作。语音识别技术的应用领域:工业控制及医疗领域在工业及医疗领域上,运用智能语音交互,能够让我们解放双手,只需要对机器发出命令,就可以让其操作完成需要的任务。提升了工作的效率。语音识别技术在个人助理、智能家居等很多领域都有运用到,随着语音识别技术在未来的不断发展,语音识别芯片的不敢提高,给我们的生活带来了更大的便利和智能化。浙江语音识别机声学模型和语言模型都是当今基于统计的语音识别算法的重要组成部分。

    语音识别是一门综合性学科,涉及的领域非常广,包括声学、语音学、语言学、信号处理、概率统计、信息论、模式识别和深度学习等。语音识别的基础理论包括语音的产生和感知过程、语音信号基础知识、语音特征提取等,关键技术包括高斯混合模型(GaussianMixtureModel,GMM)、隐马尔可夫模型(HiddenMarkovModel,HMM)、深度神经网络(DeepNeuralNetwork,DNN),以及基于这些模型形成的GMM-HMM、DNN-HMM和端到端(End-to-End,E2E)系统。语言模型和解码器也非常关键,直接影响语音识别实际应用的效果。为了让读者更好地理解语音信号的特性,接下来我们首先介绍语音的产生和感知机制。语音的产生和感知人的发音qi官包括:肺、气管、声带、喉、咽、鼻腔、口腔和唇。肺部产生的气流冲击声带,产生振动。声带每开启和闭合一次的时间是一个基音周期(Pitchperiod)T,其倒数为基音频率(F0=1/T,基频),范围在70Hz~450Hz。基频越高,声音越尖细,如小孩的声音比大人尖,就是因为其基频更高。基频随时间的变化,也反映声调的变化。人的发音qi官声道主要由口腔和鼻腔组成,它是对发音起重要作用的qi官,气流在声道会产生共振。前面五个共振峰频率(F1、F2、F3、F4和F5)。反映了声道的主要特征。

    导致我国的语音识别研究在整个20世纪80年代都没有取得学术成果,也没有开发出具有优良性能的识别系统。20世纪90年代,我国的语音识别研究持续发展,开始逐渐地紧追国际水平。在"863"计划、国家科技攻关计划、国家自然科学基金的支持下,我国在中文语音识别技术方面取得了一系列研究成果。21世纪初期,包括科大讯飞、中科信利、捷通华声等一批致力于语音应用的公司陆续在我国成立。语音识别企业科大讯飞早在2010年,就推出了业界中文语音输入法,移动互联网的语音应用。2010年以后,百度、腾讯、阿里巴巴等国内各大互联网公司相继组建语音研发团队,推出了各自的语音识别服务和产品。在此之后,国内语音识别的研究水平在之前建立的坚实基础上,取得了突飞猛进的进步。如今,基于云端深度学习算法和大数据的在线语音识别系统的识别率可以达到95%以上。科大讯飞、百度、阿里巴巴都提供了达到商业标准的语音识别服务,如语音输入法、语音搜索等应用,语音云用户达到了亿级规模。人工智能和物联网的迅猛发展,使得人机交互方式发生重大变革,语音交互产品也越来越多。国内消费者接受语音产品也有一个过程,开始的认知大部分是从苹果Siri开始。市面上有哪些语音识别模块好用呢?

    应用背景随着信息时代的到来,语音技术、无纸化技术发展迅速,但是基于会议办公的应用场景,大部分企业以上技术应用都不够广,会议办公仍存在会议记录强度高、出稿准确率低,会议工作人员压力大等问题。为解决上述问题,智能语音识别编译管理系统应运而生。智能语音识别编译管理系统的主要功能是会议交流场景下语音实时转文字,解决了人工记录会议记要易造成信息偏差、整理工作量大、重要会议信息得不到体系化管控、会议发言内容共享不全等问题,提升语音技术在会议中的应用水平,切实提升会议的工作效率。实现功能智能语音识别编译管理系统对会议信息进行管理,实现实时(历史)会议语音转写和在线编辑;实现角色分离、自动分段、关键词优化、禁忌词屏蔽、语气词过滤;实现全文检索、重点功能标记、按句回听;实现展板设置、导出成稿、实时上屏等功能。技术特点语音转文字准确率高。系统中文转写准确率平均可达95%,实时语音转写效率能够达到≤200毫秒,能够实现所听即所见的视觉体验。系统能够结合前后文智能进行语句顺滑、智能语义分段,语音转写过程中也能够直接对转写的文本进行编辑,编辑完成后即可出稿。会议内容记录更完整。系统可实现对全部发言内容的记录。大多数人会认为研发语音识别技术是一条艰难的道路,投入会巨大,道路会很漫长。深圳量子语音识别服务标准

语音识别模块被广泛应用在AI人工智能产品、智能家居遥控、智能玩具等多种领域上。深圳量子语音识别服务标准

    即在解码端通过搜索技术寻找优词串的方法。连续语音识别中的搜索,就是寻找一个词模型序列以描述输入语音信号,从而得到词解码序列。搜索所依据的是对公式中的声学模型打分和语言模型打分。在实际使用中,往往要依据经验给语言模型加上一个高权重,并设置一个长词惩罚分数。语音识别本质上是一种模式识别的过程,未知语音的模式与已知语音的参考模式逐一进行比较,佳匹配的参考模式被作为识别结果。当今语音识别技术的主流算法,主要有基于动态时间规整(DTW)算法、基于非参数模型的矢量量化(VQ)方法、基于参数模型的隐马尔可夫模型(HMM)的方法、以及近年来基于深度学习和支持向量机等语音识别方法。站在巨人的肩膀上:开源框架目前开源世界里提供了多种不同的语音识别工具包,为开发者构建应用提供了很大帮助。但这些工具各有优劣,需要根据具体情况选择使用。下表为目前相对流行的工具包间的对比,大多基于传统的HMM和N-Gram语言模型的开源工具包。对于普通用户而言,大多数人都会知道Siri或Cortana这样的产品。而对于研发工程师来说,更灵活、更具专注性的解决方案更符合需求,很多公司都会研发自己的语音识别工具。(1)CMUSphinix是卡内基梅隆大学的研究成果。深圳量子语音识别服务标准

关注我们
微信账号

扫一扫
手机浏览

Copyright©2025    版权所有   All Rights Reserved   芜湖锦荣工业皮带有限公司  网站地图  电脑端